deprecated#
import ampform.sympy.deprecated
Deprecated classes and functions for constructing unevaluated expressions.
Deprecated since version 0.15.0.
- class UnevaluatedExpression(*args, name: str | None = None, **hints)[source]#
Bases:
ExprBase class for expression classes with an
evaluate()method.Deriving from
Exprallows us to keep expression trees condense before unfolding them with theirdoitmethod. This allows us to:condense the LaTeX representation of an expression tree by providing a custom
_latex()method.overwrite its printer methods (see
NumPyPrintableand e.g. Custom lambdification).
The
UnevaluatedExpressionbase class makes implementations of its derived classes more secure by enforcing the developer to provide implementations for these methods, so that SymPy mechanisms work correctly. Decorators likeimplement_expr()andimplement_doit_method()provide convenient means to implement the missing methods.- static __new__(cls: type[DecoratedClass], *args, name: str | None = None, **hints) DecoratedClass[source]#
Constructor for a class derived from
UnevaluatedExpression.This
__new__()method correctly sets theargs, assumptions etc. Overwrite it in order to further specify its signature. The functioncreate_expression()can be used in its implementation, like so:>>> class MyExpression(UnevaluatedExpression): ... def __new__( ... cls, x: sp.Symbol, y: sp.Symbol, n: int, **hints ... ) -> "MyExpression": ... return create_expression(cls, x, y, n, **hints) ... ... def evaluate(self) -> sp.Expr: ... x, y, n = self.args ... return (x + y) ** n >>> x, y = sp.symbols("x y") >>> expr = MyExpression(x, y, n=3) >>> expr MyExpression(x, y, 3) >>> expr.evaluate() (x + y)**3
- abstract evaluate() Expr[source]#
Evaluate and ‘unfold’ this
UnevaluatedExpressionby one level.>>> from ampform.dynamics import BreakupMomentumSquared >>> s, m1, m2 = sp.symbols("s m1 m2") >>> expr = BreakupMomentumSquared(s, m1, m2) >>> expr BreakupMomentumSquared(s, m1, m2) >>> expr.evaluate() (s - (m1 - m2)**2)*(s - (m1 + m2)**2)/(4*s) >>> expr.doit(deep=False) (s - (m1 - m2)**2)*(s - (m1 + m2)**2)/(4*s)
Note
When decorating this class with
implement_doit_method(), itsevaluate()method is equivalent todoit()withdeep=False.
- _latex(printer: LatexPrinter, *args) str[source]#
Provide a mathematical Latex representation for pretty printing.
>>> from ampform.dynamics import BreakupMomentumSquared >>> s, m1 = sp.symbols("s m1") >>> expr = BreakupMomentumSquared(s, m1, m1) >>> print(sp.latex(expr)) q^2\left(s\right) >>> print(sp.latex(expr.doit())) - m_{1}^{2} + \frac{s}{4}
- class DecoratedClass#
TypeVarfor decorators likeimplement_doit_method().alias of TypeVar(‘DecoratedClass’, bound=
UnevaluatedExpression)
- implement_expr(n_args: int) Callable[[type[DecoratedClass]], type[DecoratedClass]][source]#
Decorator for classes that derive from
UnevaluatedExpression.Implement a
__new__()anddoit()method for a class that derives fromExpr(viaUnevaluatedExpression).
- implement_new_method(n_args: int) Callable[[type[DecoratedClass]], type[DecoratedClass]][source]#
Implement
UnevaluatedExpression.__new__()on a derived class.Implement a
__new__()method for a class that derives fromExpr(viaUnevaluatedExpression).
- implement_doit_method(decorated_class: type[DecoratedClass]) type[DecoratedClass][source]#
Implement
doit()method for anUnevaluatedExpressionclass.Implement a
doit()method for a class that derives fromExpr(viaUnevaluatedExpression). Adoit()method is an extension of anevaluate()method in the sense that it can work recursively on deeper expression trees.
- class DecoratedExpr#
TypeVarfor decorators likemake_commutative().alias of TypeVar(‘DecoratedExpr’, bound=
Expr)
- make_commutative(decorated_class: type[DecoratedExpr]) type[DecoratedExpr][source]#
Set commutative and ‘extended real’ assumptions on expression class.
See also
- create_expression(cls: type[DecoratedExpr], *args, evaluate: bool = False, name: str | None = None, **kwargs) DecoratedExpr[source]#
Helper function for implementing
UnevaluatedExpression.__new__.