dynamics#
import ampform.dynamics
Lineshape functions that describe the dynamics of an interaction.
See also
- class SimpleBreitWigner(s, mass, width, *args, evaluate: bool = False, **kwargs)[source]#
- Bases: - Expr- Simple, non-relativistic Breit-Wigner with \(1\) in the nominator. (1)#\[\begin{split} \begin{array}{rcl} \mathcal{R}^\mathrm{BW}\left(s; m_{0}, \Gamma_{0}\right) &=& \frac{1}{- i \Gamma_{0} m_{0} + m_{0}^{2} - s} \\ \end{array}\end{split}\]
- class BreitWigner(s, mass, width, m1, m2, angular_momentum, meson_radius, phsp_factor, *args, evaluate: bool = False, **kwargs)[source]#
- Bases: - Expr- Relativistic Breit-Wigner with \(1\) in the nominator. - SimpleBreitWignerwith- EnergyDependentWidthas width (see Equations (1) and (3)).(2)#\[\begin{split} \begin{array}{rcl} \mathcal{R}^\mathrm{BW}_{L}\left(s; m_{0}, \Gamma_{0}\right) &=& \mathcal{R}^\mathrm{BW}\left(s; m_{0}, \Gamma_{0}\left(s\right)\right) \\ \end{array}\end{split}\]- phsp_factor: PhaseSpaceFactorProtocol[source]#
 
- class EnergyDependentWidth(s, mass0, gamma0, m_a, m_b, angular_momentum, meson_radius, phsp_factor, name, *args, evaluate: bool = False, **kwargs)[source]#
- Bases: - Expr- Mass-dependent width, coupled to the pole position of the resonance. - See Equation (50.28) in PDG2021, §Resonances, p.9 and [Asner et al., 2006], equation (6). Default value for - phsp_factoris- PhaseSpaceFactor.- Note that the - FormFactorof AmpForm is normalized in the sense that equal powers of \(z\) appear in the nominator and the denominator, while the definition in the PDG (as well as some other sources), always have \(1\) in the nominator of the Blatt-Weisskopf. In that case, one needs an additional factor \(\left(q/q_0\right)^{2L}\) in the definition for \(\Gamma(m)\).- With that in mind, the “mass-dependent” width in a - relativistic_breit_wigner_with_ffbecomes:(3)#\[\begin{split} \begin{array}{rcl} \Gamma_{0}\left(s\right) &=& \frac{\Gamma_{0} \mathcal{F}_{L}\left(s, m_{a}, m_{b}\right)^{2} \rho\left(s\right)}{\mathcal{F}_{L}\left(m_{0}^{2}, m_{a}, m_{b}\right)^{2} \rho_{0}\left(m_{0}^{2}\right)} \\ \end{array}\end{split}\]- where \(F_L\) is defined by (1), \(q\) is defined by (1), and \(\rho\) is (by default) defined by (2). - phsp_factor: PhaseSpaceFactorProtocol[source]#
 
- class MultichannelBreitWigner(s, mass, channels, *args, evaluate: bool = False, **kwargs)[source]#
- Bases: - Expr- BreitWignerfor multiple channels.(4)#\[\begin{split} \begin{array}{rcl} \mathcal{R}^\mathrm{BW}_\mathrm{multi}\left(s; \Gamma_{1}, \Gamma_{2}\right) &=& \mathcal{R}^\mathrm{BW}\left(s; m_{0}, \frac{\Gamma_{1} m_{0} \mathcal{F}_{L_{1}}\left(s, m_{a1}, m_{b1}\right)^{2}}{\sqrt{s}} + \frac{\Gamma_{2} m_{0} \mathcal{F}_{L_{2}}\left(s, m_{a2}, m_{b2}\right)^{2}}{\sqrt{s}}\right) \\ \end{array}\end{split}\]- with \(\mathcal{R}^\mathrm{BW}\left(s; m_{0}, \Gamma_{0}\right)\) defined by Equation (1), a - SimpleBreitWigner.- channels: list[ChannelArguments][source]#
 
- class ChannelArguments(width: Any, m1: Any = 0, m2: Any = 0, angular_momentum: Any = 0, meson_radius: Any = 1)[source]#
- Bases: - object- Arguments for a channel in a - MultichannelBreitWigner.
- relativistic_breit_wigner(s, mass0, gamma0) Expr[source]#
- Relativistic Breit-Wigner lineshape. - See Without form factor and [Asner et al., 2006]. (5)#\[\Gamma_{0} m_{0} \mathcal{R}^\mathrm{BW}\left(s; m_{0}, \Gamma_{0}\right)\]
- relativistic_breit_wigner_with_ff(s, mass0, gamma0, m_a, m_b, angular_momentum, meson_radius, phsp_factor: ~ampform.dynamics.phasespace.PhaseSpaceFactorProtocol = <class 'ampform.dynamics.phasespace.PhaseSpaceFactor'>) Expr[source]#
- Relativistic Breit-Wigner with - FormFactor.- See With form factor and PDG2021, §Resonances, p.9. - The general form of a relativistic Breit-Wigner with Blatt-Weisskopf form factor is: (6)#\[\Gamma_{0} m_{0} \mathcal{R}^\mathrm{BW}_{L}\left(s; m_{0}, \Gamma_{0}\right) \mathcal{F}_{L}\left(s, m_{a}, m_{b}\right)\]- where \(\Gamma(s)\) is defined by (3), \(B_L^2\) is defined by (2), and \(q^2\) is defined by (1). 
- formulate_form_factor(s, m_a, m_b, angular_momentum, meson_radius) Expr[source]#
- Formulate a Blatt-Weisskopf form factor. - Deprecated since version 0.16. 
Submodules and Subpackages
- builder
- form_factor
- kmatrix
- phasespace
